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We solve the Schr6dinger Equation for an electron moving in the Coulomb field of  two 
charged nuclei. We take proper account o f  the analytic structure o f  the solutions and 
thus determine their mathematical form in the entire complex plane. These general 
solutions are then used to construct the two-centre analogue of  the usual one-centre 
Coulomb wavefunctions. 
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1. Introduction 

The calculation of  electron ejection processes in intermediate quasimolecular states formed 
in heavy-ion collisions requires the computation of  coupling matrix elements between bound 
and continuum states. The oscillating nature of  the radial continuum wave functions is a 
disadvantage in computing such matrix elements, which may be more conveniently calcu- 
lated by performing the required integrals in the complex radial variable plane. It is there- 
fore convenient to examine the analytic properties of  the continuum solutions to the 
Schr6dinger equation, separated in prolate elliptical coordinates. 

We shall write the solutions in the form 

= 1[' 2--111" m 2 m, L---U-I dz'+nFv +n(X' c~ ) (1) 

where ~ is the radial coordinate in a prolate elliptical coordinate system, m is the azimuthal 
angular momentum, l the asymptotic total angular momentum, c 2 = �89 2 where E and R 
are the energy of  the state and internuclear distance, and X = (Z 1 + Z2)R/2c  is the Sommer. 
feld parameter (Z1 and Z 2 are the charges on the 2 nuclei). Fv +n(X , c~) is a Coulomb wave 
function with an angular momentum parameter v + n (defined in detail below), and the dvm~ 
satisfy a recursion relation (RR)  discussed further in the text. In Ref. [1] we chose such 
a form for the solutions but took p = m. Although this is asymptotically true for c~ >> 1, 
l >> cR the calculation of  transition matrix elements requires the use of  non-integral 
values of  v. As we shall show below v is a parameter which expresses the many 

* This work was supported by the Bundesministerium fiii Forschung und Technologic (BMFT), and by 
the Gesellschaft fiir Schwerionenforschung (GSI). 
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valued nature of the continuum solutions, and may in general take non-integral values. We 
begin by considering the general problem and then construct solutions which satisfy the 
physical boundary conditions. The important mathematical details are given in an appendix. 

2. The General Solution of the Schr6dinger E q u a t i o n  

2.1. Separation 

As in Ref. [1] we work in a system of prolate elliptical coordinates (~, ~7, r defined by ~ = 
(r I + r2)/R , r/= (r I - r2)/R with r the angle between the (x, y)  plane and the (rl ,  r2) plane. 
We use (r, 0, ~) to represent the ordinary spherical polar coordinates. R is the internuclear 
distance (see Fig. 1). We have 

0~<r r  
2r 

R 
a s R - + 0 o r  ~ 

-1  ~<r/~< 1 r/-+ cos 0 a s R ~ 0 o r  ~ -+oo 

The potential felt by the electron at r is 

Z~ Z 2 v(r, R)= 
r l  /'2 

where we work in atomic units. Defining 

c2 = 1ER2 

p--(z2 -Zl)n 

6/ = (Z 1 +Z2)R 

;k = - q / 2 c  

the Schr6dinger Equation [-�89 2 + V(r, R)] ~(r)  = E~(r)  separates [2] to give with ff'(r) = 

d2~ 
- -  + m 2 ~  = 0 (2 )  
de  2 

I 
Y 

jr- e 

/ 
/ X 

I ~rl "-Z 

Fig. 1, The coordinate system used 
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dS m2S 
( 1  - r / z )  dr /  1 - r/2 

d dX m2X 
d-~ (~2 _ 1) ~-~ ,~2 _ 1 

+ [pr/+A -e2r/2]S = 0 (3) 

+ [c2~ 2 + q ~ - A ] X = O  (4) 

A and m are the separation constants. Eq. (2) may be solved immediately to give ~ = 
1 /X /~  e im~ with the requirement that m is an integer. Since only m 2 appears in Eqs. (3) 
and (4) we may take m to be a positive integer, or zero. Eqs. (3) and (4) are identical in 
structure, differing only in the value o f p  and q. Let us therefore only consider the general 
solution to Eq. (4) throughout the entire complex plane: this also provides the general 
solution to Eq. (3) and the solutions which satisfy the physical boundary conditions may 
then be constructed. 

2.2. The General Solution 

Eq. (4) has three singularities one each at --+1 with indices -+�89 and an essential singularity 
at oo. In general these will be branch points of  the solution which is many valued. Let us 
therefore pick Y l(~) as a basic solution to Eq. (4) with the property [3] 

Y 1 (e2i~r~) = e21riVy 1 (~) (5a) 

where we have cut the complex plane from +1 to _oo. It is shown in the appendix that a 
second independent solution Y2(~) then exists with the property 

v is called the characteristic exponent,  and as will be shown is a function of the parameters 
of  the equation. Let us now construct series expansions for y 1 and Y2. Since these are many 
valued functions it will be necessary to use a set o f  many valued functions to represent 
them. Suitable expansions are [3] for y 1. 

osm_l_v(~) = ~ aml_v+nOm_l_v+n(~) (6a) 

m 1 [ ~ . ~ ]  1/2rn 2 m 
Fsv (~) = ~ dv +nFv +n(~k, c~) (6b) 

n = - - o o  

fo ry2 :  

Q g ( ~ ) =  ~ a~v+nQm+n(~) (6c) 

1[~2-- 1]1/2m 2 dm 
Fsm-l-v = -~ L-F-J -1-v+nF-1  - v +n (X, c~) (6d) 

n = --~ 
The following definitions have been used [4] : 

Qv +n is a Legendre function of the second kind 

Fv +n is a generalized Coulomb wavefunction 

Fv(~, P) = 2v [P(1 + v -p(2vik)P(l+ 2) + v + t~A)] x/2 pV + I e -ip 1Fl(  t + v -- tT~, 2v + 2, 2ip) (7) 

with 1FI(1 + u - tT~, 2~ + 2, 2ip) a confluent hypergeometric function of the first kind. 
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Substituting these expansions in Eq. (4) gives RR's  between the coefficients a~+ n(dv m n) 
which must be satisfied for Qsm(Fs m )  to be solutions. They are 

m + m , m + m a m = 0 ( 8 a )  
Wn+2ap+n+2 vn+lar2+n+l +Unav+n g n - l a v + n - 1  +. S n - 2  l ) + n - 2  

(v + n + m  + 1)(v + n + m  + 2 ) c  2 
Wn+2 = (2v + 2n + 3)(2v + 2n + 5) (8b) 

( v + m + n +  l) 
Vn+l= ( 2 v + 2 n + 3 )  q (8c) 

un = (v +n)(v +n + 1 ) - A  + 
2(/) + n)(v + n + 1) - 2m 2 - 1 

(2u + 2n - 1)(2u + 2n + 3) 
c 2 (Sd) 

(v + n - m )  
tn-1  ( 2 / ) + 2 n - 1 )  q (8e) 

( v + n - m ) ( v + n - m -  I )C 2 
S~-2 = (2/) + 2n -- 1)(2/) + 2n -- 3) 

~ m - - m m 
- 2 d r + n - 2  Wn+2dv+n+2 + vn+ldm+n+l + undvm+n + t n - l d v + n - 1  + sn = 0 

q 

Wn +2 

(sf) 

(9a) 

[(P + rt + 2 )  2 + 722] 1/2[(/, + n + 1) 2 + 722] 1/2(/) + n --  m + 1)(v + n - m + 2) 

(v + n + 1)(v + n + 2)(2v + 2n + 3)(2v + 2n + 5) 

(9b) 

(9c) 
- _ 2 7 2 m [ ( u + n + l ) Z + 7 2 2 1 1 / 2 ( v + n - m  +1) 

(v + n)(v + n + 1)(v + n + 2)(2v + 2n + 3) c2 Vn+l  

2(v + n)(v + n + 1 ) -  2m 2 - 1 
{ ~ n = ( V + n ) ( v + n + l ) - A + c 2 [  (-2~ - ~ n  --- -1)(~ + 2 n + ~)  + 

272 2 [(v + n)(v + n + 1) - 3m 2] } (9d) 

* (v + n)-(~ + n +  1 ) ~  + 2 n - - -  1-)-(2-~v +-2n + 3) 
/ 

2Xm [(v + n )  2 + 7k 2 ] 1/2(/) + n + m) 

tn--1 - (/2 + n 7  1)(/) + n)(p + n+~(~;+--2n 1) c2 (9e) 

_ [(/) + n - -  1) 2 + 7 2 2 1 1 / 2 [ ( p + n ) 2  + 7 2 2 1 1 / 2 ( / ) + n + m - -  1 ) ( v + n + m )  (9 f )  
Sn_  2 = - -  

(v + n - 1)(u + n)(2v + 2n - 3)(2/) + 2n - 1) 

Letting v ~ m recovers the R R  given in Ref. [1] Eq. (16). 

An expansion which is more useful for a discussion of  the value of the characteristic ex- 
ponent/)  may be obtained by moving the singularities of  Eq. (4) to the standard positions 
0, 1, ~ by the substitution 

t = �89 + 1) (10) 

A solution is then found to be 

[ ~ + l ]  l / a m  ~ ~ m  ~ (11) 
/~sm(~) = [ ~ - 1 ]  n = - =  dv+nFv+ n [72, c(~ + 1) 1 
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with/~v(X, p) = 1/pFv(X, p) and where the din+ n satisfy 

V n + l d m + n + l  + Undm+n + T n _ l ~ l m + n _ l  = 0  

with 

--2C [(1; + n + 1) 2 + )t 2 ] 1/2(1; + n + m + 1) 
V r t + l  = 

(2v + 2n + 3) 

U n = (1; +n)(p +n + 1 ) - A  +c z 

- 2 c [ ( v  + n)  2 + X 2] 1/2(p + n - m) 
T n _ l  = (21; + 2n - 1) 

(12) 

(12a) 

(12b) 

(12c) 

2. 3. The Solution o f  the Recursion Relation and the Value o f  the Characteristic Exponent  

From Eq. (12) we have 

and 

~m - T n -  1 (13a)  
Rn(P) =- ~l dv+~n - Un + Vn+ 1 (d m+n+ 1~dr~re+n) v + n - - I  

Ln(v) = [Im+n -Vn+ 1 
~ ~  - ~ m  (13b) 
d v + n + l  Un + T n - l ( u + n - 1 / 3 ~ n + n )  

It is shown in the appendix tha tRn(v  ) ~ c/n or n/c for large n, and similarly forLn(P). 
For n >> 1 we require the convergent solution Rn(1; ) ~ c/n and for n ~ - 1  we require the 
solution Ln(1; ) ~ c/n. Let us therefore pick some large positive value N >> 1 and ignore the 

[(dr +N+ 1)/(dv +N)] (which is of  order c z) in comparison with U N (which is of  term VN+ 1 ~m ~ 

order N2). This enables us to calculate RN(1; ) and since 

- T n _  2 
R n - 1 (1;) = 

G -  i + VnRn(1;) 

we may calculate all Rn(1; ) for n < N .  Similarly we may calculate all Ln(1;) for all n > N *  
where N* is some large negative number. We then have 

n 
~ m  dv +n = d m rU 1 Rr(1;) n > 0 (14a) 

n 

~m ~ dv+n = d m 1-~ Ln(1;) n < 0 (14b) 
r = - - I  

which both provide convergent solutions. The condition that the two series defined in this 
way give a solution to the differential Eq. (4) is obviously 

dm+l d m 
R1(1;)L~ ay am, 1 

I fv  is an integer -- l say then the series defined from Eq. (12) terminates, and provides a 
solution to Eq. (4) under the condition 

U - m - i  
L - m - 1  + = 0 

V - m - l + l  
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Hence defining 

o~(v ,A)=RI(v)Lo(v  ) - 1 v 4: integer (15a) 

o~(I, A)  = L_  m - I  + U - m - I  U = l = integer (15b) 
V-m-l+l 

the condition that the series defined by the RR 12 is a solution to Eq. (4) is 

o~(v, Av) = 0 (16) 

Clearly ~ also depends upon the parameter e, X, m. Hence specifying these parameters 
implicitly determines a relationship between the characteristic exponent v and the separa- 
tion constant Av. In Ref. [1] it was assumed that the characteristic exponent could be 
chosen to be m, and the separation constant simultaneously chosen to be A t. It is shown 
in the appendix that this is only possible if [p[ = [q I; i.e. Z 1 or Z2 = 0. This corresponds 
to the one-centre problem in prolate elliptical coordinates [5]. 

Since Legendre functions of the first kind Pm+m satisfy same RR as those of the second 
kind [4] another solution may be obtained from Eqs. (6a) and (6c), i.e. 

P sy (~ )=  ~ avmnpm+n(~) (17) 

In order to fix the normalization for these model solutions we shall require a m = d m = 
~l _ d m ~ m  = m =am_l_v _ - 1 - v  = d - l - v  1. 

3. The Physical Solutions 

3.1. Convergence 

We have described a process for deriving solutions to the second order differential Eq. (4). 
It is shown in the appendix that these solutions converge in the complex plane cut from 
+1 to _oo under the following circumstances. 

O s Y  ; m Qs_ 1-v.  everywhere except at -+ 1 where the solutions possess singularities 

m m Fsv ;FS_l -v :  everywhere in the region If[ > 1 

~ m ~ m Fsv ; F s - l - v :  everywhere in the region I f+  1 1 > 2  

psm: everywhere except - 1  where there is a singularity 

There also exist the solutions 

pS m ~ m rn (18) 

Pv +n is the Legendre function defined which converge on the interval - 1  < ~ ~< 1. Here m 
on the cut [4]. 

3.2. The Angular Solutions 

As we have indicated Eqs. (3) and (4) are identical differing only in the values of the para- 
meters p and q. Thus provided - p  is substituted for q in Eqs. (8b) and (8d) and the Sommer- 
feld parameter X = -q /2c  is replaced by X' = p/2c wherever it occurs, the solutions developed 
in the previous sections are also applicable to Eq. (3). 
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Now the angular solutions are required in the region - 1  ~< r/~< 1 and therefore Eq. ( t8)  is 
the appropriate choice. 

m rn s(~) - Ps m ( ~ ) :  ~ ~ +np~ +n(~) 

where avon satisfies the R R  8 with - p  substituted for q in (8b) and (Sd), and a m = 1. We 
have already remarked that this solution converges everywhere in - 1  < 72 ~< 1, but in general 
it has a singularity at r/= - 1 .  However if v is chosen to be an integer = I say then psm(r?) 
has no singularity at r/= - 1  and provides a regular solution in the region - 1  K ~ ~ 1. Eq. 
(16) then determines the allowed values of the separation constant AI. Thus the value of 
the separation constant is specified by the requirement that the angular solution should 
have no singularities, in exactly the same way as the separation constant in the spherically 
symmetric case is required to be of the form l(l + 1) where l is integer (the orbital angular 
momentum quantum number) so that the angular . m solutlonPt (cos 0) has no singularity at 
0 ~  "" 

Once A and v have been specified the expansion coefficients ~l + n may be calculated by the 
methods outlined in the appendix and the angular solution may be written 

Sml(~ ) = NA P tsts~ (r/) = ~ O~t+nP~n(71 ) ( i9) 
n = m - 1  

fa [Sml(r/)] 2dz/= 2/(2l + 1) (l + m) ! / ( l  - m) ! ,  i.e. N A is chosen so that -1 

NA = n= -I(~ n)2 (2n + 2l+ 1) ( l + n - ~ . T J  [ (2 l+  1 ) 0 - - - ~ .  v (20) 

3. 3. The Radial  Solut ion 

The radial solution Xrnl(~) is required for the region 1 < ~ < oo.  M1 the model solutions 
converge in this region but the solutions Fs m , ~ s  m F m v , s_ l - v ,  Qsm- l -v  all have singularities 
at ~ = 1 unless v is an integer. Since AI has already been specified the value of v is deter- 
mined through Eq. (1 6) and assuming [pt 4= [q[ (i.e. assuming there are two charged centres) 
v cannot be integral. Therefore the only acceptable solution is 

oo 

Xrnl=NRPsm(~)=NR ~. m m ( 2 1 )  av+nPp+n(~) 
n ~ - - o o  

In the spherically symmetric case the analogous solution is 1/rFt(X, kr)  where FlOt, kr)  is a 
Coulomb wavefunction, and k has previously been defined as the asymptotic electron 
momentum [6]. This sotution has the asymptotic form 

Ft(X , kr) , sin (kr - X in (2kr) + 1~)/(1)) 
r --.e. ~ 

where | is the Coulomb phase shift. We shall show that N R may be chosen so that as 
~-+oo 

1 sin (kr - X In (2kr) + | (22) Xrnl(~) ~--+~' 7 

| then represents the two-centre Coulomb phase shift. 

Eq. (4) is a second order differential equation and thus possesses only two independent 
solutions. We have, however, given a total of seven, and hence any three of them must be 
linearly related. We take advantage of this to display the asymptotic form of Psum(~). 
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C o n t i n u u m  W a v e f u n c t i o n s  in  C o m p l e x  P l a n e  
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Fig.  2. E x a m p l e s  o f  t w o - c e n t r e  wave  f u n c t i o n s  rXrnl[P( G ~)]  
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It is easy to show that [7] 

psvm(~ ) 1 = -- tan (Trv){Qsv m (~) m - Q s _  1 --V(~)} 
7r 

Furthermore it is shown in the appendix that 

Qsm-1 - v(~) = H(a)(J) Fsm (X, c~) 

with 

P. T. Greenland and W. Greiner 

(23) 

(24a) 

1/= cot(~v) 
- - c(l+v+J)Y(1 +n - m)! 

X 

m Z".+J+2- r(�89 + v +/+  n) 
n = O  n [  

( - 1 )  n 

.o d m I F ( 1  + v + j - k + i ; O  ]1/2 +(-�89 

(24b) 

Now from the definition o f F s  m and the asymptotic form ofFv+n(X,  e~) we have for the 
asymptotic form of  F s ~  

1 (AveiC t -ihln(2c~) + Bve-iC~ + iMn(2c~j) } (25a) Fsm(X,  c~) ~_, , 

with 

[Y(1 + v + n + i X ) ]  1/2 
n = - ~  e - i rm/2  (25b) Av = �89 + 1)/2 ~ dv m n [b-~ + ; + n - -  iX)] 

I'(1 + v +  n - i X )  ] 1/2 
By = �89 n -=-~ dum+n [ P-({ +-V+'-n+-~)] eilrn/2 

and therefore defining 

#~ = H(a)(j)(Av + By)  
+ + 

7-+ = / ~  + / ~ - l - v  

we have 

1 
~Ps m (~) ,--tan(Try)(7+ cos(c~ - Xln(2c~)) + i7_ sin(c~ - Xln(2c~))} 

(2Sc) 

or 

1 " - 1  tan0 TM) 
psm(~)  ~ Tr 2RN - -  sin(kr - Xln(2kr) + | 

; ~(2) = = where N = (72+ + 72_) 1/2 tan "='mr - i % / 7 _  and hence tak ingN R 7r/[tan0rv)]" (2/R)Ar 
gives 

1 ~(2)~ (26) Xmt(~) = NRPS m (~) , -- sin(kr - Xln(2kr) + ~ml ,  

as the radial solution. 
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Thus asymptotically the one-centre and two-centre solutions differ only by a phase shift, 
as indeed they must. Several examples are given in Fig. 2. 

4. Conclusions 

The differential Eq. (4) has an extra degree of complexity with respect to that arising in 
the one-centre case, since it possesses one more singularity. This further complexity mani- 
fests itself in two ways. First, the solutions to the equation are most easily expressed as a 
series of  higher transcendental functions which possess three simple singularities ( P ~ n ,  
Qm+n ) or one simple and one essential singularity (Fv +n). Secondly the characteristic ex- 
ponent p must be defined and is, in general, non-integral. The physical solutions, however, 
may be constructed in a rather direct way from the general solutions (Eqs. (6), (11)) and 
possess the expected properties. 

The phase shift calculated from Eq. (26) have been compared to those given in Ref. [8] 
for selected values of the parameters, and a systematic difference is found, i.e. 

phase shift (Ref. [8] ) - phase shift (this work) = �89 kR 

We have therefore checked selected results by writing 

g n  psm(~) = aFsm(X, c~) +/3Fs_ 1-~(X, c~) 

and evaluating the functionsPs m , Fs m , Fsm_l _~ at two points so that a and/3 may be 
calculated. These values are then checked by evaluating the functions at a 3rd point. The 
asymptotic form o fFs  m , Fsm_l _~ rather than/~s m , ff'sm_l - v  (see appendix) are then used 
to evaluate the phase shift, which is found to agree with the results of  Eq. (A14). We may 
also note that in cases where the characteristic exponent v is complex the reality of the 
calculated phase shift |  also provides a check on the method. 

Finally we may examine the shortcomings of Ref. [1]. From Eq. (A25) and the asympto- 
tic form for Av(p ~ ~o) it can be shown that for large l values (l >> kR)  the characteristic u 
is very close to an integer. In this case we might expect that the principal component  of  the 

A g(Z) 
2rcl mt 

-rE 

Phose shifts 

=1 
rE m=O 

t=l 
m=l 

~ t = O  
m=O 

_~=2 
m=O 

-2~ i L t I 0 1 2 3 4 Fig. 3. The phase shifts | 



284 P.T. Greenland and W. Greiner 

Table 1. Values of the characteristic exponent v and the expansion coefficients a and 
defined byfis m - ~ m  -~ o~Fsu + #Fsm_l_v. In all cases we take m = 0, E = 1 and Z1 = Z2. 

R, the internuclear distance, is measured in atomic units. It can be seen that ]~//}[--, 0 
(or ~) for l/(kR) ~ oo 

/ = 0  

1 1/2 + 0.42869i 0.5518 + 1.7857i 1.19148 - 1.4251i 

2 1/2 + 0.87797i 0.18249 + 0.12647i 0.20472 - 0.08595i 

3 1/2 + 1.14247i 0.065683 + 0.011738i 0.067882 - 0.00457i 

4 1/2 + 1.37781i 0.026969 + 0.007814i 0.02770 + 0.00462i 

/ = 1  

0.9 0.90971 14.027 - 1.3768i -1.6287 + 0.1599i 

2 0.133134 -1.8933 + 1.5069i 3.7047 - 2.9485i 

3 1/2 + 0.31305i -1.3067 - 1.2405i 0.67453 + 1.6707i 

4 1/2 + 0.81532i -0.19955 - 0.00656i 0.01571 + 0.19903i 

/ = 2  

1 0.978177 -50.063 + 75.794i 0.1166 - 0.1766i 

2 0.113004 -0.0135 - 0.9108i 0.1770 + 11.942i 

3 0.313251 -0.001422 - 3.22361i 0.002849 + 6.4567i 

4 0.390713 -0.43137 - 5.83615i 0.53183 + 7.1953i 

two-cen t re  wave func t ion  is jus t  Fs m (or FSml _~). Table 1 gives the value o f v  and the co- 

ef f ic ients  a and 13 by  

(27)  

It can immedia te ly  b e  seen tha t  only  one t e rm in Eq.  (27)  is d o m i n a n t  for large 1. Fur ther -  

more  the p rocedure  descr ibed in Ref.  [1] becomes  exact  for the  case [pl  = I q 1, i.e. the  one- 

centre  p rob l em  in prola te  spherical  coordinates .  (Eq. (A25)  also shows that  for  [pl ~ I q[ 

v is close to  an integer).  Thus we may  conc lude  that  Ref.  [ 1 ] provides  app rox ima te  solut ions  

whenever  the character is t ic  e x p o n e n t  v is near an integer ,  tha t  is for l >> k R  or tP[ ~ I q I. 

Such app rox im a t ions  should,  however ,  be used wi th  caut ion.  

Acknowledgement .  We wou ld  like to  t h a n k  M. Gyulassy and M. Gros for several useful 

discussions.  
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Appendix 

We wish to discuss certain aspects of the solution of Eq. (4) and the associated R R s  (8, 9, 
12) in greater detail. We shall be concerned with 

1) The convergence of the solutions. 
2) The relationship between the various solutions. 
3) The numerical methods used to calculate the solutions. 

A1. The Convergence of the Solutions 

A 1.1. The  Convergence  o f  the  R e c u r s i o n  R e l a t i o n  

Let us take the R R  (9) as an example. Similar remarks also apply to the other R R s  (8, 12). 
We shall consider the situation for IN[ >> 1, and assume (dm+N)/(dm+N+l)  ~ m ( d r  +N+ 1 ) /  

m (d~+N+2) - x ,  to order 1 I N  2. Then keeping terms of order 1 /N  2 we get from (9) 

1 C 2 X 4 - N 2 X  2 + 1 C 2  = 0 (Aa) 
4 4 

This has four solutions 

x = +-2N/c 

x = +-c/2N 

(A2a) 

(aZb) 

Thus the 5-term R R  (9) has four independent solutions, and the general solution is a linear 
combination of these. Using the same conventions the 3-term R R  (12)has two independent 
solutions given by 

x = X / c  (A3a) 

x = c / N  (a3b) 

A1 .2 .  The  Convergence  o f  the  S o l u t i o n s  F s  m , Qs m , Ps~ n , Ps m , p s  m 

Considering the asymptotic form for the basis functions we have for IN[ -+ oo 

(2rr) 1/2 (c~y +N+ 1 

F u +N(X,  c~)  -+ 2(u +N+ 1 ) [P(1 + v + N + iX)P(1 + v + N - iX)] 1/2 
for all ~ [4] 

(A4) 

Qm+N(~)_+(�89 P(I];~ + ~ +N--)+v+m+N) (~2_ 1)-1/4 [~ _ (~2 1)l/2]v+N+(1/2) 

for all ~ off the cut [3] (A5) 

Therefore picking the convergent solutions for the R R s  we have 

dv +NF~ +N -+ ~ N -+ + oo (A6a) 
din+N- 1 Fv +N- 1 ~'~ 

m 1 
dv +NFv +N _+ N -+ ---oo (A6b) 

dv +N+ 1Fv +N+ 1 

m m C 
av+NQv+N _+ 

a m Qm+ ~ [~ _ (~2 1) 1/2 ] N-+ +oo (A6c) 
b' +N- -  1 v N - - ]  
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I a m , ~ m  _+C__~_ __ 1)1/2]_ 1 V +N~v  +N 
m - ,  [~ _ ( ~ 2  

av+N+IQv+N+ 1 2N 
N -+ --oo (A6d) 

Thus the series for F s  m converges whenever [ ~ l >  1 and Qs m converges if ~ is off  the cut. 
Similarly it can be shown that F s  m converges whenever 1~ + 1 l >  2. The convergence of  
Ps m follows from the convergence of Qs m . Ps  m may similarly be shown to converge in 
the region - i < ~ ~ +1 either by considering its asymptotic form ~n this region [7], or 
from the convergence o f P s  m .  

A2. The Relationship Between the Solutions 

A2 .1 .  A n o t h e r  R e p r e s e n t a t i o n  o f  the  S o l u t i o n  

We may derive another representation of  the solution which provides an obvious link be- 
tween the solutions/~s m (k, c~) and Qs m (~). We shall therefore call this solution Qs m (~). 
Writing 

Q~smv = e+-ic~ ~ "v+nT"(+-)m ~rn~v+n~*]:ea (A7) 
n = - - o o  

and substituting this expression in Eq. (4) we find the R R  satisfied by the cT(+)n m is 

~+_. 7, (_+)m #'~+ ~ (-+)rn ~+ ~(+)m = 0 (A8a) n + l " v + n + l  + Unav+n + Z n - l " v + n - 1  

with 

~+ [q -Y- 2ie(v + n + 1)] (v + n + m + 1) 
V n + l  = 

(2v + 2n + 3) 

U n = (v +n)(v  + n  + 1) + c  2 - - A  

(ASb) 

(A8c) 

~/~n - -  1 = [q + 2ie(v + n)] (v + n - m) 
(2v + 2n - 1) 

(ASd) 

Clearly this RR has similar properties to Eq. (12). We may also define 

ffS m = e+iC~ ~ 7,(+-)rod m {~'~ 
t * v + n  * v + n ~ . ~ . l  

n = - - o o  

A 2 . 2 .  The  R e l a t i o n s h i p  B e t w e e n  t he  S o l u t i o n s  

We have a total of  ten different representations for the solution to Eq. (4). However since 
only two independent solutions are possible, these representations must be related. We shall 
give the important  relationships between the Ps m Qs m and F s  m . First let us note that, if 
the substitution v + n -+ - v -  l - n  is made in any of the R R  (8, 9, 12, A8) it can be seen 
(in conjunction with (A20)) that a_ml --V--n -- av+nm if  we have picked" a_m I - -v  = gym . Using 
this and the equation 

p~n (~) = I tan(rw) [Qm (~) _ Q_m 1 _ v (~)] (A9) 
7r 

and noting tan(v + n)rr = tan(nv) we have 

psvm (~) = 1 tan0ru ) [Qsm v (~) _ Qsm_ 1 _ v (~)] (A10a) 
7r 
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/3sm(~) 1 tan0w)[0s~ n(~) _ ~ m = - -  Q s _  1 -  ~(~)] (A1 0b) 
7T 

The solutions Qsm_l_ v(~) and Fsv m (~) have the property that 

Qsm-1-u(e21ri~) = e27TW Qsm--1--v(~) 

Fsu m (eZat~) = e27riVFs m (~) 

Furthermore FSm_l - v  and Fs~ n are independentand therefore 

Qsm-1 -v(~) = ~ Fsm (~) + [JFsm-1 -u(~) 

and letting ~ ~ e27ri~ gives Qsm_l-v(~) = o~Fsm(~) + f3Fsm-1-v(~)" e41riu and'assuming v 4= n 
or n * �89 we must have/3 = 0 and therefore 

Qsm- t - v(~) ~ Fsu m (~) 

tn ~ 1.1"1. Similarly we have Qs_ 1 - v  cc Qs_ I -i,  '~ Fs m o: FSv m. The constants of proportionality may 
be evaluated by expanding a hypergeometric series representation for Q~+n and the confluent 
hypergeometric representation for Fu +n and comparing like terms. We give the most important 
relationships below. In all cases] is an arbitrary integer and Hv(]) is independent of/'. 

a) am 1 -v(~) = H(a)(j)Fsum( x, c~): 

Using 

2Vrrl/2r(-v + rn)~v[ ~2 _ 1 ]I/2m 
a-ml-v(~) = ( -1 )  m P(�89 -- U) [ ~2 ] x 

x 2F1 � 8 9 1 8 9 1 8 9 1 8 9 1 8 9 1 8 9  (Al l )  

we derive 

rr 1/2 cot(try) 
H(a)(]) = - -  C ( 1  + v +J)P(1 + v + ] - m) 

P( �89  + P  �9 
aura+i+ 2n n~ ] + n) ( _ 1 )  n 

n=O 

d m  [P(1 + v + j - k +  i~k) -11/2 
o) 

k (_�89 1 + ~ + ] + s - k -  iX) 

s=O 

b )  Os_rnl-v(~)  = H(~)b)(J)ff:sm( ~k, c~): 

Using 

Q_ml_v(~ ) = ( -1 )  m 2 - 1 - v  P(-2v) [~- 1] (~ + 1)v x 

x 2 F l ( - v - m , - v , - 2 v ; 1 - ~  ) 

(A12) 

(A13) 
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we derive 

Hp)(]) - 

,n" eiC(j)2v +2] c -  (v +]) 

tan(rw) P(1 + v + ] -  iX)P(1 + v + m +])P(1 + v +])  

~(_;)m+](_l)n P(l + v + n + j + m)r(1 + 2v + 2] + n) 

n=o nW(1 + v + n + / - m )  

a"' [ P(1 +v + / ' -  n + iX)] u2 (/Y' 
,, = o "+J - "  [ b-O ~ + j - -  L- - - / ~ J  n!P(2+2v+2j-n) 

C) ~ m H~e)(])Fgvm(~k, Q s - t - v ( ~ )  = c~): 

Using the same representation for Q_m 1_v as a) we derive 

Yy)(])= -Tr 1/2 cot(Try) . e--(1 + v +]) 

F(1 + v + j - r n ) P ( 1  + v + ] -  &) 

(A14) 

;(_)m r(�89 + v + j  + n) 
" ,+i+2, ,  ( - 1 ) "  

n = 0 n! (A15) 
X [ r ( 1  +/2 + ] --  r/ + i•)1 1/2 (i)n 

dvm~J-n [P-~ ~ v + ] - - - n - - ~ ) J  n!I'(2v + 2]'+ 2 - n )  n=0 

A3. Numerical Methods 

Eq. (16) gives a relationship between v and A defined implicitly by ~ ( v ,  Av) = 0. How- 
ever, the determination of  the zeros o f  a function without good starting values is difficult 
and we shall therefore describe the methods used to generate these starting values. We shall 
be concerned with the two problems of  determining Av given v, and determining v(A) given 
A. 

A3.1. The Value o f  Av Given v 

Since we require the convergent solutions to the RR we shall assume that there exists some 
m ~ am_n ~ 0 for all n > N (taking the RR(8)  as an example). The RR N>> 1 so that av+n 

then gives 2N + 1 simultaneous linear equations and the condition that these should have 
a non-trivial solution is obviously 

det (M/v~) - AI)  = 0 (At6)  

where we have written the ( t runcated)RR in the form 

M(N).(N) (A17) (v) ~v = 0 

?'1 
a v = 

where 
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and 

I 1 
"'(N) -18 2' S ! : ' 2 1 V l ( v )  ' ~!--  Y]' ~ l  (A19) 

(At 
with u n = Un + A ,  i.e. ME-v) ) is independent of  A. Thus for a given N and v we obtain 

. . . (N)  F rthe 2 N  + 1 A v ' s  which from (A16) are obviously the eigenvalues OllVl(v). u r it is easy to 
) N) h e show that M~v ) and M~_l_v) av the same eigenvalues and therefore 

A v = A _  1 - v (A20) 
, ,(N) 

Two other important  properties also follow from the properties OllVl(v). First by multi- 
plying each row and column of det (M~)  - AI)  by ( - 1 )  it can easily be shown that the 
eigenvalues A are invariant under the substitution q -+ - q .  Further by letting N -+ ~o and 
making the substitution v ~ v + l it can be shown that the eigenvalues are invariant against 
this substitution. Finally, we remark that the 1 to 1 relationship between v and Av defined 
by Eq. (16) requires that all the R R  must give the same values of  A for a given v. Although 
this is not obvious it is indeed the case, and the computation of Av has been carried out by 
diagonalizing the matrices given by R R  (8), (9) and (12). It is found that Eq. (8) gives the 
fastest diagonalization procedure and this is therefore used to calculate Av. This procedure 
is also applicable to the case of  integral v, in which case the matrix terminates to the upper 
left. 

A 3 . 2 .  T h e  value o f  v G i v e n A  

For this purpose we require the definition of v as the characteristic exponent. We assume 
Yl has the properties given by Eq. (5a) and write Yl as a linear combination of the two 
independent solutions r/1 and r~ 2 which have the property that at z o 

rll(Zo) = 1 'r/2(Zo) = 0 

~'~(zo) = o ~(Zo)  : 1 

Yl(zo) = ar l l (Zo)  + b ~ z ( Z o )  = a (A21) 

and using the circulation property o f y  1 

Y l ( J l r i z o )  = eZ~riVa = an 1 (e2'rizo) + brl2 (e2nizo) (A22a) 

Considering the derivatives we may also derive 

e2mVb -'- arl'l (e 2nizo) + brl'2(e 2mz  o) ( a22b)  

The condition that these two equations in a and b have a non-trivial solution, is 

det [ ffl(e2mz~ - e21riv r~z(e27riz~ ] : 0 (A23a) 

[ ~t 1 (e2niZo) 7"/~(e27rizo) _ e2rriv ] 
or 

W(e2~riZo) - e 2€ [r~l(e2~rtZo) + r/~(e2~riZo)] + e 4~riu = 0 (A23b) 

where W(z)  = r l l ( z ~ ' 2 ( z )  - r~' l(z)rlz(z)  is the Wronskian, which can be shown to be of  the 
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form K/(z 2 - 1). Using the values o f r h ,  2, r/l, 2 given above we see K = zo 2 - 1 and 
W(e27riZo) = 1. This gives 

cos(2cw) = �89 [r~ 1 (e 2~riz o) + ~'z (e2~iz o)] (124)  

Now it is shown in Ref. [3] that rh, 2, r/'l, 2 are entire transcendental functions of  A of  
order ~< �89 for any given z o. Therefore, cos 21w is an entire transcendental function of  A 
and may be expanded in terms of  its zeros [9]. Using arguments similar to those given in 
Ref. [3] (Sect. 3.53) we finally derive 

1 - cos(27rv) = ~ A -- A n ( c  2) (A25) 

1 + cos(TrX/4A _ 2c 2 + 1) n=~--~A --~cZ 7 ~ n +  1) 

The values of An may be derived from the diagonalization of  M/N) o) and hence starting 
values for v as a function of  A may be obtained. 

We may note that according to Eq. (25) v is not required to be real, and indeed, in general 
we find complex values. Furthermore, i fv  o is a solution to (A25) so is - 1 - v  o. Hence un- 
less v = n or n + �89 there is another independent solutiony2 with the characteristic expo- 
nent - 1 - v  as inEq. (5b). I fv  = n we must haveA =An.  An is always an eigenvalue of  
My = 0 and hence v = n implies that Eqs. (3) and (4) generate the same eigenvalues. This 
is only possible if IPl = iq[, i.e. either Z 1 o r Z  2 =0 .  This is the one-centre case in prolate 
elliptical coordinates. The case v = n + ~ we shall not treat further. 

A 3. 3. The NumericaIMethods 

We start with the parameters which define the problem: 

E the energy of  the continuum state 
R the internuclear separation 
Z1Z  2 the nuclear charges 
l the asymptotic angular momentum 
m the azimuthal angular momentum 

Using the variables E/Z~ and Z2R it is easy to see that the solutions scale with Z 2, and 
Z = Z1 /Z  z is the only free charge parameter. We first calculate the parameters of  the 
problem c, p, q, X and determine At by diagonalizing M~ s) (with q replaced b y -  p). 
Diagonalizing M~ 14) gives 29 An values for the calculation of  v according to Eq. (125).  
The value of  v is then improved using Eq. (12) and the prescription in the text. 

The solutions to the RR are then constructed. The 3-term RR present no problem, the 
prescription given in the text may be used. The 5-term RRs  are solved by a method analogous 
to that used in Ref. [1]. Picking a large value of  N(=50 in our case), we set all terms with 
n > N  or n < - N  = 0 and iterate backwards to n = 0, using two different arbitrary sets of 
starting values. The requirement that these solutions should match in the neighborhood of  
n = 0 then generates four homogeneous simultaneous equations, three of  which we solve 
as an ordinary problem. This gives the linear combination of  solutions required. The value 
of  the 4th expression (which should be zero if v has been correctly calculated), is found to 
be less than ~ 10 -7 in most cases. The normalization is then adjusted so that the leading 
term (a m) = 1. The overall normalization, and phase shift, have been calculated using Eqs. 
(A 10b) and (A 14) in conjunction with the asymptotic form for Fv + n (iX,, e:(i~ + 1)). 
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